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UV-B Radiation Affects Chlorophyll and Activation of Rubisco by 
Rubisco Activase in Canavalia ensiformis L. Leaves 

Bok Youl Choi and Kwang Soo Roh* 
Department of Biology, Keimyung University, Daegu 704-701, Korea 

We studied the influence of UV-B radiation on chlorophyll and rubisco activation by rubisco activase in the leaves of 
jackbean (Canavalia ensiformis). Chlorophyll content was decreased, indicating that the synthesis of those molecules 
may have been degraded or repressed after exposure. Rubisco content was significantly lower in radiated tissue compared 
with the untreated control; rubisco activity showed a similar pattern of change. Based on these data, we suggest that 
rubisco activity is associated with the level of rubisco protein, and that UV-B inhibits its activation and induction, as 
well as that of rubisco activase. Therefore, we propose that the inhibitory effect of rubisco by UV-B may be caused by 
rubisco activase. 
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The impact of UV-B radiation (280 to 320 nm) at the 
earth's surface is predicted to increase because of the 
anthropogenic depletion of stratospheric ozone caused 
by industrial emissions of atmospheric pollutants, par- 
ticularly chlorofluorocarbons (McKenzie et al., 1999). 
Environmental factors, such as light, temperature, nutri- 
ents, heavy metals, CO2, and ozone, modify the effect 
of this radiation (Kulandaivelu et al., 1997). These 
effects may include decreased penetration of PAR (400 
to 700 nm), a reduction in accessory pigments, altered 
stomatal conductance, and, indirectly, the retardation 
of photosynthetic carbon assimilation (Teramura and 
Sullivan, 1994). UV-B radiation can alter several met- 
abolic processes in leaves that ultimately change the 
levels of many foliar constituents, e.g., carbohydrates, 
photosynthetic pigments, UV-B-absorbing components, 
and free radicals (Mazza et al., 2000). O[sson et al. 
(1999) have suggested that UV-B-induced accumula- 
tion of specific UV-absorbing constituents protects the 
photosynthetic apparatus from the damaging effects 
of this radiation source. 

UV-B radiation has considerable photobiological 
influences on plant growth and development (Jordan, 
1996; Jayakumar et al., 2003), as well as the light 
reaction of photosynthesis (McNamara and Hill, 2000). 
Its predominant effect is the inhibition of electron 
transport. When this radiation is absorbed directly by the 
thylakoid-membrane components, membrane orga ni- 
zation is damaged (Kulandaivelu and Noorudeen, 
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1983). This may include reductions in chlorophyll, D1 
protein, the light-harvesting chlorophyll a/b binding pro- 
tein of PSII, rubisco levels (Strid et al., 1990), and the 
expression of photosynthetic genes (Mackerness et al., 
1999). 

It is poorly understood how UV-B interacts with 
chlorophyll, rubisco, and the photosynthetic process. 
Therefore, the objective of our study was to determine 
the effect of this radiation source by measuring chlo- 
rophyll content and the activities and contents of rubisco 
and rubisco activase in irradiated and untreated plants. 

MATERIALS A N D  M E T H O D S  

Plant Growth and UV-B Radiation 

Plants of the jackbean (Canavalia ensiformis L.) were 
raised in a growth chamber under the following con- 
ditions: PFD of 800 to 1200 ~M/m2/s, 350 ppm CO2, 
60% relative humidity, 16-h photoperiod, and day/ 
night temperatures of 26/18')C (Roh et al., 2001 ). At 15 
weeks after sowing, plants were exposed to 170 mW 
m -2 UV-B radiation (via Philips TL2OWl0/RS lamps) 
for 3 h at 25~C. To remove radiation of <280-nm quality, 
the UV-B tube was wrapped in cellulose acetate (0.13 
mm thickness) to prevent increased transmission of 
the shorter wavelengths. Plexiglas (FBL. 2458, Rohm 
Gmbh, Chemische Fabrik, Germany) was positioned 
between the UV lamps and the cellulose acetate to 
maintain its optical stability. All experiments were 
independently duplicated. 
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Chlorophyll Measurement 

Chlorophyll contents were measured spectrophoto- 
metrically, using specific absorption coefficients of 664.5 
and 647.0 nm (Inskeep and Bloom, 1985). Fully 
expanded leaves from mature plants were frozen, then 
transferred to DMF and stored at 5~ in darkness. 
Extracts were centrifuged for 5 min at 8000g. The fol- 
lowing equations were used to estimate the concen- 
trations of chlorophyll a, chlorophyll b, and total 
chlorophyll from the supernatants. 

Chlorophyll a (mg/g fw) = 12.70 A~4.5 - 2.79 A~47 
Chlorophyll b (mg/g fw) = 20.70 A~,47 - 4.62 A~4 s 
Total chlorophyll (mg/g fw) = 17.90 A~47 + 8.08 A~45 

Purification of Rubisco and Rubisco Activase 

Rubisco and rubisco activase were purified at 4~ 
according to the method described by Wang et al. 
(1992). Briefly, frozen leaf tissue was pulverized in a 
mortar under liquid nitrogen, then extracted in buffer 
containing 50 mM BTP (pH 7.0), 10 mM NaHCO3, 10 
mM MgCI2, 1 mM EDTA, 0.5 mM ATP, 10 mM DTT, 
1 mM PMSF, 1 mM benzamidine, 0.01 mM leupeptin, 
1.5% PVPP, and 3 mM MBT. The leaf slurry was filtered 
through four layers of cheesecloth and one layer of 
Miracloth. This filtered solution was then centrifuged 
at 30,000g for 40 rain. (NH4)2SO4 powder was slowly 
added to the supernatant, to 35% saturation, and 
stirred for 30 min. Supernatant and pellet were both 
collected by centrifugation at 8000g for 10 min. The 
supernatant (containing rubisco) was then brought to 
55% saturation by adding (NH4)2SO4 powder. Following 
centrifugation, the pellet was re-suspended in 5 mL of 
20 mM BTP (pH 7.0) containing 0.2 mM ATP, 10 mM 
MgCI2, and 2 mM MBT (Buffer A). Afterward, 50% PEG- 
10K was added to a final concentration of 18%. The 
resulting precipitate was collected by centrifugation at 
8000g for 10 rain and re-suspended in Buffer A. This 
solution was loaded onto a Q-Sepharose column equili- 
brated with 20 mM Tris (pH 7.5), 10 mM MgCI2, and 
10 mM NaHCO~. The column was then washed with 
the same buffer containing 0.1 M NaCI. Elution was 
started with a linear gradient of 0.1 to 0.5 M NaCI, 
and a flow rate of 1 mL/min. The 3-mL fractions were 
pooled and assayed for rubisco activity and content. 

To quantify rubisco activase in the re-suspended pellet 
obtained above, 50% (w/v) PEG-10K was added to 
Buffer A to a final concentration of 18%. It was then 
stirred 5 min, and centrifuged at 8000g for 10 min. 
The pellet was dissolved in 5 mL of Buffer A. This 
solution was cleared by spinning it at 20,000g for 10 

min. Afterward, the pellet was re-suspended in 5 mL 
of Buffer A, and the solution was cleared again. The 
collected supernatants were loaded onto a 20 mL Q- 
Sepharose column equilibrated with 20 mM BTP (pH 
7.0). Elution proceeded with 40 mL of 20 mM BTP 
(pH 7.0), at a flow rate of 1 mL/min, before continuing 
with 140 mL of a linear gradient (0 to 0.5 M NaCI) in 
20 mM BTP (pH 7.0). The 3-mL fractions were pooled 
and assayed for rubisco activase activity and content. 

Activity Assays 

Rubisco activity was determined spectrophotometri- 
cally at 25~ by monitoring NADH oxidation at 340 
nm (Racker, 1962). The assay medium contained 1 M 
Tris buffer (pH 7.8), 0.006 M NADH, 0.1 M GSH, 
0.5% glyceraldehyde-3-phosphate dehydrogenase, 0.025 
M 3-phosphoglycerate kinase, 0.05% ~-glycerophosphate 
dehydrogenase-triose phosphate isomerase, 0.025 M 
RuBP, 0.2 M ATP, 0.5 M MgCI2, 0.5 M KHCO3, and 
purified rubisco solution in a final volume of 1 mL. 
One unit of enzyme was defined as the amount of 
enzyme producing 1 ~tM of RuBP per rain. Rubisco 
activase activity was defined as the ability to produce 
ADP in an ATP-dependent reaction at an absorption 
of 340 nm (Robinson and Portis, 1989). The purified 
rubisco activase solution was added to 0.4 mL of an 
activation-reaction mixture containing 50 mM Tricine 
(pH 8.0), 20 mM KCI, 10 mM MgCI2, 1 mM ATP, 1 mM 
phosphoeno/pyruvate, 0.3 mM NADH, 40 units/mL 
pyruvate kinase, and 40 units/mL lactate dehydroge- 
nase. One unit was defined as the amount that cata- 
lyzed the cleavage of 1 ~tM ATP per min. 

ELISA 

The contents of rubisco and rubisco activase were 
detected by ELISA. For coating of the antigen, 100 ~tL 
of different dilutions of two enzymes in 0.1 M sodium 
carbonate-bicarbonate coating buffer (pH 9.5) was 
added to each microplate well. After incubating over- 
night at room temperature (RT), the plate was washed 
with 0.01 M PBS (pH 7.4) containing 0.05% Tween 
20. To eliminate nonspecific binding, 250 ~L of 0.1% 
BSA in 0.01 M PBS (pH 7.4) was added to each well 
and incubated for 1 h at 37~ The plate was then 
washed, and 50 ~tL of various dilutions of two enzymes 
in 0.01 M PBS (pH 7.4) was added. Approximately 
50 ~tL of different dilutions of a rabbit anti-rubisco and 
anti-rubisco activase antiserum (as the primary anti- 
body; Roh et al., 1997) was then added to each well, 
and incubated for 30 min at 37~ After the plate was 
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again washed as described above, 100 ~L of peroxi- 
dase-conjugated goat anti-rabbit IgG [as diluted to 
1:20,000 in 0.01 M PBS (pH 7.4)] that contained 
0.1% BSA was added and incubated for 30 min at 
37~ The plate was again washed, and 100 t~L of 
peroxidase substrate [OPD tablets in 10 mL of 0.05 M 
citrate/0.1 M sodium phosphate buffer (pH 5.0) con- 
taining 30% of H202] was added. After incubation at 
RT in the dark for 20 min, the reaction was termi- 
nated by adding 0.1 mL of 1 N HCI. Absorbance at 
490 nm was determined by an ELISA microplate reader 
(Bio-Rad Model 3550-UV). 

RESULTS AND DISCUSSION 

Chlorophyll 

Depending on the particular crop species, chlorophyll 
content can either increase or decrease in response to 
enhanced UV-B radiation (Larsson et al., 1998; Sun 
and Payn, 1999; Barsig and Malz, 2000). In our study, 
the chlorophyll a:b ratio decreased when plants were 
irradiated (Table 1). This may have been a result of 
faster breakdown or decreased synthesis of Chl a 
compared with Chl b, even though the level of the 
latter also rose here. Decreased amounts of total chlo- 
rophyll in UV-treated leaves have been associated 
with the inhibition of aminotevulinic acid synthesis 
(Stobart et al., 1985) or a reduction in protochloro- 
phyllides (Boddi et al., 1995). Our data suggest that 
chlorophyll synthesis may have been degraded or 
repressed after UV-B exposure. These results agree with 
those of Strid et al. (1990), who showed that UV radiation 
causes the total-chlorophyll content to decline signifi- 
cantly in pea leaves. Strid and Porra (1992) have also 
proposed that UV-B radiation influences the genetic 
regulation of the chlorophyll-binding protein, thereby 
leading to chlorophyll destruction. Likewise, Dube and 
Bornman (1991 ) have reported that the addition of Cd 
in combination with UV-B radiation reduces chlorophyll 
concentrations. 

Rubisco and Rubisco Activase 

Rubisco content was greatly reduced by treatment 
with UV-B (Fig. 1), which suggests that this exposure 
caused a reduction in the synthesis and/or expression 
of rubisco. This result agrees with that of Takeuchi et 
al. (2002), who showed that rubisco synthesis is signif- 
icantly suppressed by supplementary UV-B radiation 
in rice leaves. Jordan et al. (1992) have also demon- 
strated that UV-B radiation lowers the mRNA transcripts 
for rubisco subunits in pea. Rubisco activity also declined 
in response to irradiation (Fig. 2), which seems to indi- 
cate that decreased activity plays an important role in 
UV-induced inhibition of photosynthesis. This result is 
consistent with that of Nogues and Baker (1995), who 
have reported that UV-B radiation affects carboxylat- 
ing efficiency not only by changing rubisco activity, but 
also by degrading rubisco in pea leaves. UV-B exposure 
has also been linked to rubisco damage either by direct 
mechanisms or, indirectly, through the formation of 
reactive oxygen species within the cell (Lesser, 1996; 
Allen et al., 1998). 

Figure 1. Effect of UV-B on rubisco content in jackbean. 
Plant was grown for 15 weeks. Experimental leaves were 
irradiated with UV-B (280 - 320 nm) at 25~ for 3 h. 

Table 1. Effect of UV-B on chlorophyll content in jackbean 
leaves. Plant was grown for 15 weeks. 

Chl a Chl b Chl a/b Total chl 
Treatment 

(mg/g fw) 
Control 15.03 19.02 O. 79 34.05 
UV 13.20 19.31 0.68 32.51 

Figure 2. Effect of UV-B on rubisco activity in jackbean. 
Plant was grown for 15 weeks. Experimental leaves were 
irradiated with UV-B (280 - 320 nm) at 25"C for 3 h. 
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F19ure 3. Effect 0f UV-8 0n ru615c0 act1va5e c0ntent 1n jack- 
6ean. P1ant wa5 9r0wn f0r 15 week5. Exper1menta1 1eave5 
were 1rrad1ated w1th UV-8 (280 - 320 nm) at 25~C f0r 3 h. 

F19ure 4. Effect 0f UV-8 0n ru615c0 act1va5e act1v1ty 1n jack- 
6ean. P1ant wa5 9r0wn f0r 15 week5. Exper1menta1 1eave5 
were 1rrad1ated w1th UV-8 (280 - 320 nm) at 25~C f0r 3 h. 

J0rdan (1996) f0und that UV-8 exp05ure cau5e5 
ru615c0 act1v1ty t0 decrea5e m0re rap1d1y than the rate 
at wh1ch the en2yme d15appear5. L1kew15e, 5tr1d et a1. 
(1990) have 5h0wn that rad1at10n decrea5e5 ph0t0- 
5ynthet1c capac1ty 6y dama91n9 P5 11 and t0ta1 ru615c0 
act1v1ty 1n pea 1eave5, a1th0u9h re1at1ve act1vat10n 0f the 
rema1n1n9 ru615c0 may 1ncrea5e. A11en et a1. (1997) 
have rep0rted that a UV-8-1nduced decrea5e 1n the 
119ht-5aturated rate 0f C02 a551m11at10n 15 acc0mpa- 
n1ed 6y dec11ne5 1n 60th ru615c0 c0ntent and act1v1ty. 
7he ru615c0 h010en2yme 15 act1vated 6y the 61nd1n9 
0f act1vat0r C02 and M92~ t0 the 8-am1n0 9r0up 0f Ly5- 
201 w1th1n the act1ve 51te 0n the 1ar9e 5u6un1t (Andrew5 
and L0r1mer, 1987). Ru615c0 1nact1vat10n 11ke1y 10wer5 
ph0t05ynthet1c act1v1ty (Ar0 et a1., 1 993). 

We have prev10u51y hyp0the512ed that the UV- 
1nduced decrea5e 1n ru615c0 c0ntent and act1v1ty 15 
a550c1ated w1th ru615c0 act1va5e (1997, 2001). 1n the 
current 5tudy, ru615c0 act1va5e c0ntent wa5 10wer 1n 
UV-treated t155ue than 1n the c0ntr01 (F19. 3). A 51m11ar 
chan9e wa5 065erved 1n the act1v1ty 0f ru615c0 act1va5e 
(F19. 4). P0rt15 (2003) ha5 determ1ned that ru615c0 

act1va5e 15 0ne 0f a new type 0f chaper0ne re4u1red f0r 
ru615c0 act1vat10n. 7h15 en2yme 61nd5 preferent1a11y t0 
1nact1ve ru615c0 and d1550c1ate5 after A7P hydr01y515 
(5anche2 et a1., 1995). 7heref0re, 0ur 065ervat10n that 
the reduct10n 1n ru615c0 act1va5e 1ed t0 a 1ar9e dec11ne 
1n ru615c0 act1v1ty further 5upp0rt5 the the0ry that the5e 
pr0ce55e5 1nh161t ph0t05ynthe515 and 9r0wth (Eckardt 
et a1., 1997; He et a1., 1997). 
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